NEWTON'S LAW OF MOTION

First Law of Motion

Everybody continues to be in its state of rest or of uniform motion in a straight line unless compelled by some external force to act.

Second Law of Motion

The rate of change of momentum of a body is directly proportional to the applied force and takes place in the direction in which the force acts.

$$F \propto \frac{dp}{dt} \Rightarrow F = k \frac{d}{dt} (mv)$$

$$F = \frac{mdv}{dt} = ma$$

Third Law of Motion

To every action, there is always an equal and opposite reaction.

$$F_{12} = -F_{21}$$

Law of Conservation of Momentum

The total momentum of an isolated system of interacting particles is conserved.

$$p_a' + p_B' = p_A + p_B$$

Impulse

Change in momentum

13

Lami's Theorem

If three forces acting on a particle are in equilibrium, then

 $\frac{A}{\sin \beta} = \frac{B}{\sin \gamma} = \frac{A}{\sin \alpha}$

Equilibrium of Particle

where net external force on particle is **zero**

Friction

Limiting	Friction
f _{s (max)}	$= \mu_s R$

Kinetic friction $f_k = \mu_k R$

 $I_{S \text{ (max)}} = \mu_{S} R$ Angle of Repose

Angle of friction

 $\mu_s = \tan \alpha$

 $\mu_s = \tan \theta$

α is angle of inclination, where block just begin to slide down the plane

(θ is angle between resultant and normal)

Motion on a Rough Inclined Plain

 $R = mg \cos \theta$

 $F = mg\sin\theta - f$

 $a = g(\sin \theta - \mu \cos \theta)$

Pseudo force

 $\vec{F}_{\text{pseudo}} = \text{ma}_{\text{frame of refrence}}$

14

Motion of Bodies in Contact

Two bodies in contact

$$\xrightarrow{F}_{m_1} \xrightarrow{F_1} \xrightarrow{F_2} \xrightarrow{m_2}$$

Acceleration on bodies,
$$a = \frac{F}{(m_1 + m_2)}$$

$$F_1 = m_1 a = \frac{m_1 F}{(m_1 + m_2)}$$

$$F_2 = m_2 a = \frac{m_2 F}{(m_1 + m_2)}$$

Three bodies in contact

Acceleration on bodies,
$$a = \frac{F}{m_1 + m_2 + m_3}$$

Contact force b/w m₁ and m₂ Contact force b/w m₂ and m₃
$$F_1 = \frac{(m_2 + m_3)F}{(m_1 + m_2 + m_3)}$$

$$F_2 = \frac{m_3F}{(m_1 + m_2 + m_3)}$$

$$F_2 = \frac{m_3 F}{(m_1 + m_2 + m_3)}$$

Motion of two bodies, one resting on the other

$$f'=ma$$
 m A $f = \mu mg$ M B F

$$a = \frac{1}{(M+m)}$$
$$f = \mu N = \mu mg$$

$$f = \mu (M+m)g$$

$$\begin{array}{c}
B \\
M
\end{array}$$

$$a = \frac{F}{(M+m)} \mu_1 g$$
 $F - f_a = F - \mu_1 (M+m) g$

Motion of two bodies, one resting on the other R₃ $T_1 = \frac{F}{(m_1 + m_2 + m_3)}$ m₃g m,g m,g Tension in string $T_2 = (m_2 + m_3)a = \frac{(m_2 + m_3)F}{(m_1 + m_2 + m_3)} \Big| T_3 = m_3 a = \frac{m_3 F}{(m_1 + m_2 + m_3)}$ K. L K1, L1 K1, L2 $KL = K_1L_1 = K_2L_2$ $K_{eq} = K_1 + K_2 + K_3$ $T = 2\pi \sqrt{\frac{m}{K_{eq}}}$ mg+ma

Thrust force	Variable mass system
$F_{\text{thurst}} = \frac{dm}{dt} = v_{\text{relative}}$	$\vec{F} = m \frac{d\vec{v}}{dt} + v \frac{d\vec{m}}{dt}$

When unequal masses m₁ and m2 suspended from a pulley (m₁ > m₂)

When a body of mass m2 is placed on a frictionless horizontal surface

When a body of mass m2 is placed on a rough horizontal surface

$$a = \frac{(m_1 - \mu m_2)g}{(m_1 + m_2)}$$

$$T = \frac{m_1 m_2 (1 + \mu)g}{(m_1 + m_2)}$$

$$a = \frac{(m_1 - m_2)g}{(m_1 + m_2 + M)}$$

$$T_{1} = \left(\frac{2m_{2} + M}{m_{1} + m_{2} + M}\right) m_{1}g$$

$$T_{2} = \left(\frac{2m_{1} + M}{m_{1} + m_{2} + M}\right) m_{2}g$$

Motion on smooth inclined surface

$$a = \left(\frac{m_1 - m_2 \sin \theta}{m_1 + m_2}\right) g$$

$$T = \frac{m_1 m_2 (1 + \sin \theta) g}{(m_1 + m_2)}$$

Motion of two bodies placed on two inclined planes having different angle of inclination

$$a = \frac{(m_1 \sin \theta - m_2 \sin \theta)g}{m_1 + m_2}$$

$$T = \frac{m_1 m_2}{m_1 + m_2} (\sin \theta_1 + \sin \theta_2) g$$

